Knowledge and Common Knowledge
in a Distributed Environment*

Joseph Y. Halpern Yoram Moses
IBM Almaden Research Center Department of Applied Mathematics
San Jose, CA 95120 The Weizmann Institute of Science

Rehovot, 76100 ISRAEL

Abstract: Reasoning about knowledge seems to play a fundamental role in distributed
systems. Indeed, such reasoning is a central part of the informal intuitive arguments used
in the design of distributed protocols. Communication in a distributed system can be
viewed as the act of transforming the system’s state of knowledge. This paper presents
a general [ramework for formalizing and reasoning about knowledge in distributed sys-
tems. We argue that states of knowledge of groups of processors are useful concepts
for the design and analysis of distributed protocols. In particular, distributed knowledge
corresponds to knowledge that is “distributed” among the members of the group, while
common knowledge corresponds to a fact being “publicly known”. The relationship be-
tween common knowledge and a variety of desirable actions in a distributed system is
illustrated. Furthermore, it is shown that, formally speaking, in practical systems com-
mon knowledge cannot be attained. A number of weaker variants of common knowledge
that are attainable in many cases of interest are introduced and investigated.
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Proceedings of the 3rd ACM Conference on Principles of Distributed Computing, 1984. 1t is essentially
identical to the version that appears in Journal of the ACM 37:3, 1990, pp. 549-587. The work of the
second author was supported in part by DARPA contract N00039-82-C-0250.



1 Introduction

Distributed systems of computers are rapidly gaining popularity in a wide variety of
applications. However, the distributed nature of control and information in such systems
makes the design and analysis of distributed protocols and plans a complex task. In
fact, at the current time, these tasks are more an art than a science. Basic foundations,
general techniques, and a clear methodology are needed to improve our understanding
and ability to deal effectively with distributed systems.

While the tasks that distributed systems are required to perform are normally stated
in terms of the global behavior of the system, the actions that a processor performs
can depend only on its local information. Since the design of a distributed protocol
involves determining the behavior and interaction between individual processors in the
system, designers frequently find it useful to reason intuitively about processors’ “states of
knowledge” at various points in the execution of a protocol. For example, it 1s customary
to argue that “... once the sender receives the acknowledgement, it knows that the
current packet has been delivered; it can then safely discard the current packet, and send
the next packet...”. Ironically, however, formal descriptions of distributed protocols,
as well as actual proofs of their correctness or impossibility, have traditionally avoided
any explicit mention of knowledge. Rather, the intuitive arguments about the state of
knowledge of components of the system are customarily buried in combinatorial proofs
that are unintuitive and hard to follow.

The general concept of knowledge has received considerable attention in a variety of
fields, ranging from Philosophy [Hin62] and Artificial Intelligence [MSHI79] and [Moo85],
to Game Theory [Aum76] and Psychology [CM81]. The main purpose of this paper is
to demonstrate the relevance of reasoning about knowledge to distributed systems as
well. Our basic thesis is that explicitly reasoning about the states of knowledge of the
components of a distributed system provides a more general and uniform setting that
offers insight into the basic structure and limitations of protocols in a given system.

As mentioned above, agents can only base their actions on their local information.
This knowledge, in turn, depends on the messages they receive and the events they
observe. Thus, there is a close relationship between knowledge and action in a distributed
environment. When we consider the task of performing coordinated actions among a
number of agents in a distributed environment, it does not, in general, suffice to talk
only about individual agents’ knowledge. Rather, we need to look at states of knowledge
of groups of agents (the group of all participating agents is often the most relevant one to
consider). Attaining particular states of group knowledge is a prerequisite for performing
coordinated actions of various kinds.

In this work we define a hierarchy of states of group knowledge. It is natural to
think of communication in the system as the act of improving the state of knowledge,
in the sense of “climbing up the hierarchy”. The weakest state of knowledge we discuss
is distribuled knowledge, which corresponds to knowledge that is distributed among the



members of the group, without any individual agent necessarily having it.! The strongest
state of knowledge in the hierarchy is common knowledge, which roughly corresponds to
“public knowledge”. We show that the execution of simultaneous actions becomes com-
mon knowledge, and hence that such actions cannot be performed if common knowledge
cannot be attained. Reaching agreement is an important example of a desirable simulta-
neous action in a distributed environment. A large part of the technical analysis in this
paper is concerned with the ability and cost of attaining common knowledge in systems
of various types. It turns out that attaining common knowledge in distributed environ-
ments is not a simple task. We show that when communication is not guaranteed it is
impossible to attain common knowledge. This generalizes the impossibility of a solution
to the well-known coordinated attack problem [Gra78]. A more careful analysis shows
that common knowledge can only be attained in systems that support simultaneous co-
ordinated actions. It can be shown that such actions cannot be guaranteed or detected in
practical distributed systems. It follows that common knowledge cannot be attained in
many cases of interest. We then consider states of knowledge that correspond to eventu-
ally coordinated actions and to coordinated actions that are guaranteed to be performed
within a bounded amount of time. These are essentially weaker variants of common
knowledge. However, whereas, strictly speaking, common knowledge may be difficult to
attain in many practical cases, these weaker states of knowledge are attainable in cases
of interest.

Another question that we consider is that of when it is safe to assume that certain
facts are common knowledge, even when strictly speaking they are not. For this purpose,
we introduce the concept of internal knowledge consistency. Roughly speaking, it is
internally knowledge consistent to assume that a certain state of knowledge holds at a
given point, if nothing the processors in the system will ever encounter will be inconsistent
with this assumption.

The rest of the paper is organized as follows. In the next section we look at the
“muddy children” puzzle, which illustrates some of the subtleties involved in reason-
ing about knowledge in the context of a group of agents. In Section 3 we introduce a
hierarchy of states of knowledge in which a group may be. Section 4 focuses on the re-
lationship between knowledge and communication by looking at the coordinated attack
problem. In Section 5 we sketch a general definition of a distributed system, and in
Section 6 we discuss how knowledge can be ascribed to processors in such systems so as
to make statements such as “agent 1 knows " completely formal and precise. Section 7
relates common knowledge to the coordinated attack problem. In Section 8, we show
that, strictly speaking, common knowledge cannot be attained in practical distributed
systems. Section 9 considers the implications of this observation and in Section 10 we
begin to reconsider the notion of common knowledge in the light of these implications.
In Sections 11 and 12, we consider a number of variants of common knowledge that are

'In a previous version of this paper [HM90], what we are now calling distributed knowledge was
called implicit knowledge. We have changed the name here to avoid conflict with the usage of the phrase
“implicit knowledge” in papers such as [FH8S, Lev84].



attainable in many cases of interest and discuss the relevance of these states of knowl-
edge to the actions that can be performed in a distributed system. Section 13 discusses
the notion of internal knowledge consistency, and Section 14 contains some concluding
remarks.

2 The muddy children puzzle

A crucial aspect of distributed protocols is the fact that a number of different processors
cooperate in order to achieve a particular goal. In such cases, since more than one agent
is present, an agent may have knowledge about other agents’ knowledge in addition to
his knowledge about the physical world. This often requires care in distinguishing subtle
differences between seemingly similar states of knowledge. A classical example of this
phenomenon is the muddy children puzzle — a variant of the well known “wise men” or
“cheating wives” puzzles. The version given here is taken from [Bar81]:

Imagine n children playing together. The mother of these children has told
them that if they get dirty there will be severe consequences. So, of course,
each child wants to keep clean, but each would love to see the others get dirty.
Now it happens during their play that some of the children, say k of them,
get mud on their foreheads. Each can see the mud on others but not on his
own forehead. So, of course, no one says a thing. Along comes the father,
who says, “At least one of you has mud on your head,” thus expressing a
fact known to each of them before he spoke (if £ > 1). The father then asks
the following question, over and over: “Can any of you prove you have mud
on your head?” Assuming that all the children are perceptive, intelligent,
truthful, and that they answer simultaneously, what will happen?

The reader may want to think about the situation before reading the rest of Barwise’s
discussion:

There is a “proof” that the first & — 1 times he asks the question, they will
all say “no” but then the kth time the dirty children will answer “yes.”

The “proof” is by induction on k. For k = 1 the result is obvious: the dirty
child sees that no one else is muddy, so he must be the muddy one. Let us do
L = 2. So there are just two dirty children, a and b. Each answers “no” the
first time, because of the mud on the other. But, when b says “no,” a realizes
that he must be muddy, for otherwise b would have known the mud was on
his head and answered “yes” the first time. Thus a answers “yes” the second
time. But b goes through the same reasoning. Now suppose k = 3; so there
are three dirty children, a,b,c. Child a argues as follows. Assume I don’t
have mud on my head. Then, by the k = 2 case, both b and ¢ will answer
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“yes” the second time. When they don’t, he realizes that the assumption

was false, that he is muddy, and so will answer “yes” on the third question.
Similarly for b and c. [The general case is similar.|

Let us denote the fact “At least one child has a muddy forehead” by m. Notice that
if k> 1, i.e., more than one child has a muddy forehead, then every child can see at least
one muddy forehead, and the children initially all know m. Thus, it would seem, the
father does not need to tell the children that m holds when & > 1. But this is false! In
fact, had the father not announced m, the muddy children would never have been able
to conclude that their foreheads are muddy. We now sketch a proof of this fact.

First of all, given that the children are intelligent and truthful, a child with a clean
forehead will never answer “yes” to any of the father’s questions. Thus, if £ = 0, all of
the children answer all of the father’s questions “no”. Assume inductively that if there
are exactly £ muddy children and the father does not announce m, then the children
all answer “no” to all of the father’s questions. Note that, in particular, when there are
exactly £ muddy foreheads, a child with a clean forehead mitially sees £ muddy foreheads
and hears all of the father’s questions answered “no”. Now assume that there are exactly
k + 1 muddy children. Let ¢ > 1 and assume that all of the children answer “no” to the
father’s first ¢ — 1 questions. We have argued above that a clean child will necessarily
answer “no” to the father’s ¢** question. Next observe that before answering the father’s
¢™ question, a muddy child has exactly the same information as a clean child has at the
corresponding point in the case of & muddy foreheads. It follows that the muddy children
must all answer “no” to the father’s ¢** question, and we are done. (A very similar proof
shows that if there are k¥ muddy children and the father does announce m, his first £ -1
questions are answered “no”.)

So, by announcing something that the children all know, the father somehow manages
to give the children useful information! How can this be? Exactly what was the role of
the father’s statement? In order to answer this question, we need to take a closer look
at knowledge in the presence of more than one knower; this is the subject of the next
section.

3 A hierarchy of states of knowledge

In order to analyze the muddy children puzzle introduced in the previous section, we
need to consider states of knowledge of groups of agents. As we shall see in the sequel,
reasoning about such states of knowledge is crucial in the context of distributed systems
as well. In Section 6 we shall carefully define what it means for an agent 1 to know a
given fact o (which we denote by K;y). For now, however, we need knowledge to satisfy
only two properties. The first is that an agent’s knowledge at a given time must depend
only on its local history: the information that it started out with combined with the
events it has observed since then. Secondly, we require that only true things be known,
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interpretation for R, and let |G| > 2. Then for all runs r € R, times ¢, and formulas ¢
it is the case that (Z,r,1) = Cop iff (Z,7,0) = Cosep.

Since practical systems turn out to have temporal imprecision, Theorem 8 implies
that, strictly speaking, common knowledge cannot be attained in practical distributed
systems! In such systems, we have the following situation: a fact @ can be known to a
processor without being common knowledge, or it can be common knowledge (in which
case that processor also knows ¢), but due to (possibly negligible) imperfections in the
system’s state of synchronization and its communication medium, there is no way of
getting from the first situation to the second! Note that if there is a global clock, then
there cannot be any temporal imprecision. Thus, it is consistent with Theorem 8 that
common knowledge is attainable in a system with a global clock.

Observe that we can now show that, formally speaking, even people cannot attain
common knowledge of any new fact! Consider the father publicly announcing m to the
children in the muddy children puzzle. Even if we assume that it is common knowledge
that the children all hear whatever the father says and understand it, there remains some
uncertainty as to exactly when each child comes to know (or comprehend) the father’s
statement. Thus, it is easy to see that the children do not immediately have common
knowledge of the father’s announcement. Furthermore, for similar reasons the father’s
statement can never become common knowledge.

9 A paradox?

There is a close correspondence between agreements, coordinated actions, and common
knowledge. We have argued that in a precise sense, reaching agreements and coordinating
actions in a distributed system requires attaining common knowledge of certain facts.
However, in the previous section we showed that common knowledge cannot be attained in
practical distributed systems! We are faced with a seemingly paradoxical situation on two
accounts. First of all, these results are in contradiction with practical experience, in which
operations such as reaching agreement and coordinating actions are routinely performed
in many actual distributed systems. Tt certainly seems as if these actions are performed
in such systems without the designers having to worry about common knowledge (and
despite the fact that we have proved that common knowledge is unattainable!). Secondly,
these results seem to contradict our intuitive feeling that common knowledge is attained
in many actual situations; for example, by the children in the muddy children puzzle.

Where is the catch? How can we explain this apparent discrepancy between our formal
treatment and practical experience? What is the right way to interpret our negative
results from the previous section? Is there indeed a paradox here? Or perhaps we are
using a wrong or useless definition of common knowledge?

We believe that we do have a useful and meaningful definition of common knowledge.
However, a closer inspection of the situation is needed in order to understand the subtle
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processor p; has the same history at (r,¢') and at (v, + é'). Since (r,t) and p; were
chosen arbitrarily, it thus follows that the system has temporal imprecision. i

References

[Aum76]

[Bar81]

[CASDS83]

[CL85)]

[CM81]

[CMS6]

[DHSS6]

[DM90]

[DRS90]

[EC82)

[FHSS]

R. J. Aumann. Agreeing to disagree. Annals of Statistics, 4(6):1236-1239,
1976.

J. Barwise. Scenes and other situations. Journal of Philosophy, 78(7):369-397,
1981.

F. Cristian, H. Aghili, H. R. Strong, and D. Dolev. Atomic broadcast: from
simple diffusion to Byzantine agreement. In Proc. 15th International Conf.
on Fault-Tolerant Computing Systems, 1985.

K. M. Chandy and L. Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Trans. on Computer Systems, 3(1):63-75,
1985.

H. H. Clark and C. R. Marshall. Definite reference and mutual knowledge.
In A. K. Joshi, B. L. Webber, and 1. A. Sag, editors, Elements of discourse
understanding. Cambridge University Press, Cambridge, U.K., 1981.

K. M. Chandy and J. Misra. How processes learn. Distributed Computing,
1(1):40-52, 1986.

D. Dolev, J. Y. Halpern, and H. R. Strong. On the possibility and impossibility
of achieving clock synchronization. Journal of Computer and System Sciences,

32(2):230-250, 1986.

C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine
environment: crash failures. Information and Computation, 88(2):156-186,
1990.

D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in Byzantine agree-
ment. Journal of the ACM, 34(7):720-741, 1990.

E. A. Emerson and E. M. Clarke. Using branching time temporal logic to syn-
thesize synchronization skeletons. Science of Computer Programming, 2:241—

266, 1982.

R. Fagin and J. Y. Halpern. Belief, awareness, and limited reasoning. Artificial
Intelligence, 34:39-76, 1988.

43



[FHO4]

[FHV92]

[FI86]

[FLPS5]

[Gal79]

[GraT8]

[Had87]

[Hal87]

[HF85]

[Hin62)

[FIM90]

R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability.
Journal of the ACM, 41(2):340-367, 1994.

R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can machines know? On
the properties of knowledge in distributed systems. Journal of the ACM,
39(2):328-376, 1992.

M. J. Fischer and N. Immerman. Foundations of knowledge for distributed
systems. In J. Y. Halpern, editor, Theoretical Aspects of Reasoning about
Knowledge: Proc. 1986 Conference, pages 171-186. Morgan Kaufmann, San
Francisco, Calif., 1986.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. impossibility of distributed
consensus with one faulty processor. Journal of the ACM, 32(2):374-382,
1985.

R. G. Gallager. Seminar on computer communication networks, Office of

Industrial Liason, MIT. 1979.

J. Gray. Notes on database operating systems. In R. Bayer, R. M. Graham,
and G. Seegmuller, editors, Operating Systems: An Advanced Course, Lecture
Notes in Computer Science, Vol. 66. Springer-Verlag, Berlin/New York, 1978.
Also appears as IBM Research Report RJ 2188, 1978.

V. Hadzilacos. A knowledge-theoretic analysis of atomic commitment pro-
tocols. In Proc. 6th ACM Symp. on Principles of Database Systems, pages
129-134, 1987. A revised version has been submitted for publication.

J. Y. Halpern. Using reasoning about knowledge to analyze distributed sys-
tems. In J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson, editors,
Annual Review of Computer Science, Vol. 2, pages 37-68. Annual Reviews
Inc., Palo Alto, Calif., 1987.

J. Y. Halpern and R. Fagin. A formal model of knowledge, action, and com-
munication in distributed systems: preliminary report. In Proc. 4th ACM
Symp. on Principles of Distributed Computing, pages 224-236, 1985.

J. Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, N.Y.,
1962.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a dis-
tributed environment. Journal of the ACM, 37(3):549-587, 1990. A pre-
liminary version appeared in Proc. 8rd ACM Symposium on Principles of
Distributed Computing, 1984.

44



[HM92]

[HMMS835]

[HZ92]

[Koz83)]

[KTS6]

[Lev84]

[LRS6]

[MDHS6]

[ML90]

[Moo85]

[Mos88]

[MSHI79]

[MTSS]

J. Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319-379, 1992.

J. Y. Halpern, N. Megiddo, and A. Munshi. Optimal precision in the presence
of uncertainty. Journal of Complezity, 1:170-196, 1985.

J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: knowledge-
based derivations and correctness proofs for a family of protocols. Journal of

the ACM, 39(3):449-478, 1992.

D. Kozen. Results on the propositional p-calculus.  Theoretical Computer
Science, 27(1):333-354, 1983.

S. Katz and G. Taubenfeld. What processes know: definitions and proof
methods. In Proc. 5th ACM Symp. on Principles of Distributed Computing,
pages 249-262, 1986.

H. J. Levesque. A logic of implicit and explicit belief. In Proc. National
Conference on Artificial Intelligence (AAAT ’84), pages 198-202, 1984.

R. E. Ladner and J. H. Reif. The logic of distributed protocols (preliminary
report). In J. Y. Halpern, editor, Theoretical Aspects of Reasoning about
Knowledge: Proc. 1986 Conference, pages 207-222. Morgan Kaufmann, San
Francisco, Calif., 1986.

Y. Moses, D. Dolev, and J. Y. Halpern. Cheating husbands and other stories: a
case study of knowledge, action, and communication. Distributed Computing,

1(3):167-176, 1986.

M. S. Mazer and F. H. Lochovsky. Analyzing distributed commitment by
reasoning about knowledge. Technical Report CRL 90/10, DEC-CRL, 1990.

R. C. Moore. A formal theory of knowledge and action. In J. Hobbs and R. C.
Moore, editors, Formal Theories of the Commonsense World, pages 319-358.
Ablex Publishing Corp., Norwood, N.J., 1985.

Y. Moses. Resource-bounded knowledge. In M. Y. Vardi, editor, Proc. Second
Conference on Theoretical Aspects of Reasoning about Knowledge, pages 261
276. Morgan Kaufmann, San Francisco, Calif., 1988.

J. McCarthy, M. Sato, T. Hayashi, and §. Igarishi. On the model theory of
knowledge. Technical Report STAN-CS-78-657, Stanford University, 1979.

Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3:121-169, 1988.

45



[MW84]

[Nei8§]

[NT93]

[PR85]

[PT92]

[RKS6]

[Ros85]

[Tar55]

[YCT9]

7. Manna and P. L. Wolper. Synthesis of communicating processes from
temporal logic specifications. ACM Trans. on Programming Languages and

Systems, 6(1):68-93, 1984.

G. Neiger. Knowledge consistency: a useful suspension of disbelief. In M. Y.
Vardi, editor, Proc. Second Conference on Theoretical Aspects of Reasoning
about Knouwledge, pages 295-308. Morgan Kaufmann, San Francisco, Calif.,
1988.

G. Neiger and S. Toueg. Simulating real-time clocks and common knowledge

in distributed systems. Journal of the ACM, 40(2):334-367, 1993.

R. Parikh and R. Ramanujam. Distributed processing and the logic of knowl-
edge. In R. Parikh, editor, Proc. Workshop on Logics of Programs, pages
256-268, 1985.

P. Panangaden and S. Taylor. Concurrent common knowledge: defining agree-
ment for asynchronous systems. Distributed Computing, 6(2):73-93, 1992.

S. J. Rosenschein and L. P. Kaelbling. The synthesis of digital machines with
provable epistemic properties. In J. Y. Halpern, editor, Theoretical Aspects
of Reasoning about Knowledge: Proc. 1986 Conference, pages 83-97. Morgan
Kaufmann, San Francisco, Calif., 1986.

S. J. Rosenschein. Formal theories of Al in knowledge and robotics. New
Generation Computing, 3:345-357, 1985.

A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

Y. Yemini and D. Cohen. Some issues in distributed processes communication.
In Proc. of the 1st International Conf. on Distributed Computing Systems,
pages 199-203, 1979.

46





